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An algorithm for coupled solving 2D Navier-Stokes equations in 
the stream function ~-vorticity oJ variables is presented. Lid driven 
cavity f low is computed as a test example. Implicit difference 
schemes on uniform grids are used for discretizing the unsteady 
Navier-Stokes equations. An iterative method, similar to the 
BLOCK-ORTHOMIN(K) method, is used for solving a block-matrix set 
of linear algebraic equations at each time step. The non-symmetric 
block is reversed on each block-iteration by using approximate fac- 
torization--ORTHOMIN(1) iterative method. The difference Laplace 
operator is reversed by means of a direct method. The comparison 
of the results, provided by coupled solving Navier-Stokes equations 
with those provided by decoupled (consecutive) solving the equa- 
tions for oJ and ~b, demonstrates the advantages of the suggested 
computing technique. © 1995 Academic Press, Inc. 

INTRODUCTION 

Recently much interest has been devoted to the development 
of  efficient algorithms for solving the system of Navier-Stokes 
equations because these equations are an important part of  the 
mathematical modeling of  various processes and phenomena. 
For a long time the decoupled solving numerical techniques 
have been mostly used for computing Navier-Stokes equations 
[1]. However the consecutive solving of  the above equations 
leads to a restriction on the time step even when the implicit 
time approximation is used. Such a restriction may occur in 
the two most frequently used choices of  variables: velocity 
u-pressure p formulation and vorticity co-stream function 
formulation. In the first case a relation u "  = f ( p * )  arises. In 
the second case a relation 

cok+'[r = f(~o ~) (1)  

arises in the consecutive solving the unsteady Navier-Stokes 
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equations. Here k stands for the time level and F denotes the 
boundary of  the domain under consideration. Lijumkis [2] and 
Vabishchevich [3] note that for the q, - co formulation and for 
moderate Reynolds numbers such as Re < 1000, the time-step 
restriction following from relation (1) is stronger than the time- 
step restriction caused by using the velocity values from the 
previous time step in the approximation of  the convective terms. 
They have found numerically that the restriction when one uses 
(1) is 

r < 1.5 Re h:, (2) 

where rstands for the time-step and h stands for the mesh size. 
New difference schemes are proposed in [2, 3] for relaxing the 
restriction (2). 

Recently a number of  papers have been devoted to coupled 
solving the system of Navier-Stokes equations, both, in ~/, - 
co and in u - p formulations. Vanka in [4, 5] proposes an 
a!gorithm for coupled solving Navier-Stokes equations in prim- 
rove variables using the finite difference method. He uses the 
multigrid technique in [6] for rapid computations. Rubin and 
Khosla [7] and Popov and Majorova [8] propose algorithms 
for coupled solving ~ - co equations. Bender and Khosla [9] 
investigate the usage of  direct sparse matrix solvers in the 
solving Navier-Stokes equations in ~b - co formulation. Lipi- 
takis [ 10] and Osswald et al. [ 11 ] use direct methods for coupled 
solving 3D Navier-Stokes equations. Arakawa et al. [12] com- 
pare results from the use of  the multigrid technique for both 
the coupled and the decoupled solving 2D Navier-Stokes equa- 
tions. Van Dam and Hafez [13] compare some direct and itera- 
tive methods that have been used for solving particularly para- 
bolized Navier-Stokes equations in ~0 - co formulation. Let us 
note that the direct methods have been used in many of  the 
above papers for solving large sparse matrix equations at each 
time step. However, Radicati et al. [14] compare results from 
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the use of iterative and direct methods for solving unsteady 
convection-diffusion equations and they show that for grids, 
finer than 64 x 32, the iterative methods are more preferable 
for computing the problem they consider. This conclusion is 
valid for the case when one solves the sets of  linear algebraic 
equations with the same precision in both cases, using direct 
or iterative methods. However, Radicati et al. also note that in 
many cases there are no physical reasons for the very accurate 
solving of the matrix equation at each time step. Our own 
experience confirms these conclusions. From this point of view 
it is more preferable to use iterative methods to be able to solve 
the matrix equations at each time step with an appropriate 
accuracy. This conclusion is theoretically justified in a linear 
case: Bramble et al. [15] prove for a specific class of  linear 
parabolic PDEs and for a certain class of  numerical methods 
that it is sufficient to achieve a moderate accuracy for the 
numerical solution at each time step. 

In the present paper a new iterative method tbr coupled 
solving 2D unsteady Navier-Stokes equations in ~0 - co formu- 
lation is proposed. The suggested numerical technique may be 
also used for computing steady-state problems, whose solution 
is considered as a time stabilization solution of the unsteady 
equations. The lid-driven cavity flow is computed as a test 
problem. Different approximations of the convective terms are 
used. The results from the coupled and the decoupled solving 
Navier-Stokes equations are compared for the above problem. 
It is demonstrated that the restriction (2) can be significantly 
relaxed for moderate Re (or, even removed for small Re) by 
the assistance of  the suggested here coupled solving numerical 
technique. The presented numerical results illustrate the fact 
that the suggested technique allows the flow to be computed 
with the same accuracy (as in the case of  using consecutive 
solving numerical technique) spending less CPU time. 

The remainder of  the paper is organized as follows. Next 
section is devoted to the mathematical model and the difference 
schemes. In the third section the used block-matrix iterative 
method is described. In the last section the results from the 
numerical experiments are presented. 

MATHEMATICAL MODEL AND DIFFERENCE SCHEMES 

Here u = OO/ay, v = - & M & v  are components of the velocity 
vector, tp is the stream functin and co = i~v/O.v - Otdlh, is the 
vorticity of the velocity, 12 denotes the unit square in R-', F is 
its boundary, Re stands for Reynolds number. The usual non- 
slip and impermeability boundary conditions are considered: 

th = O, I,&___z~ = 0, (x,y) ~ F/F ~, (5) 
~r7 

04, Ft = 0 ,  u -  - 1, (x,y) 
ih,' 

= {(x,y):0 < x <  1,y = 1}. (6) 

A rectangular grid f'l~, = 12/, U "yj, with steps h, and h,, and 
sizes N, and N,, is introduced on f~ U F. Implicit finite differ- 
ence schemes are used to approximate the system (3)-(6) and 
in the general case they may be written as 

(7) 

The blocks and functions in (7) may be written in the more 
detailed form as 

T 
A , , & =  l& + r A , ( ~ J , & ) - ~ e A & ,  

l& 

"0, 

2 ^ 

A,.,•= -/-~-' ~ ' - '  ' 

2 ~ 2 

(x, y) ~ ~j,, 

(x, y) ~ Yh, 

(X, y) E l)j,, 

(X, y) ~ TilT),, 

(x, y) E y],, 

(8) 

(9) 

where s - 1 denotes the nearest node on the internal bound- 
ary normal, 

As has been noted above, the lid-driven cavity flow is com- 
puted as a test problem. It is assumed that the lid of  the cavity 
has suddenly started to move at the moment t = 0 with a 
dimensionless constant velocity u = - 1. The unsteady dimen- 
sionless Navier-Stokes equations were computed up to the 
moment of  fluid flow stabilization and the steady state solution 
is demonstrated for convenience. 

The governing equations are 

OoJ O u o J  Ovo~ 1 
--+ + --- AoJ, (3) 
at Ox Oy Re 

A 0 =  -co, (x ,y)  •12, t > 0 .  (4) 

I I& ,  (x,y) ~ ~h, 
A21~ l O, (x, y) E %,, 

{ A~.  (x,y) E 12h, 

A2.,¢= I¢, (x,y) E%,  

f ho, (x, y) ~ 12j,, 

f ' = L o ,  ( x , y ) ~ T h ,  

0, (x, y) E 12j,, 

f i =  0, ( x , y ) ~ y h ,  

( lO) 

(l]  

(12) 

(13) 
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It can be seen that in this case A~, AI2, A,~,f~, andf i  are the 
same as for the usually used decoupled numerical technique 
[1 ]. Let us note that the operator A ~2 includes Thom's  boundary 
conditions for the vorticity, but, opposite to (1), in this case 
we have 

wk+,lr =f(~k+,). (14) 

The grid functions in (8)-(13) are denoted by the same letters 
as the continuous functions and the following notations are 
used: & = w(x, y, tk+~), w = co(x, y, tk). 1 is the identity operator, 
A,.(~, &) is a linear grid operator approximating the convective 
terms, A is a grid operator approximating the 2D Laplace opera- 
tor on the uniform grid. The different choices of  the operator 
A,. determine the different difference schemes: 

CD: A~(qJ, &) -the centra l  d i f ferencing  of the convec- 
tive terms; 

FUD: A,.(~b, &) -the f i r s t  u p w i n d  d i f ferencing  scheme [1 ]; 

SUD: A,.(~, &) -the s e c o n d  u p w i n d  d i f ferencing  scheme [7]. 

Using the consecutive solving algorithm we will use notations 
CS.CD, CS.FUD, CS.SUD, respectively. 

I T E R A T I V E  M E T H O D  

Let us rewrite the set of  linear algebraic equations (7) as 

A w  = g (15) 

where 

rAA:l [w] 
A =  lA21 A22J'  w =  w 2 g2 ' 

gl, g2, w 1, w 2 E RU; All, AI2, A21, A22 E R N×u, N = N~ X 

Ny. The matrix A and submatrices A~, A22 are assumed to be 
nonsingular. The following algorithm describes a precondi- 
tioned iterative method BLOCK-ORTHOMIN(K)  [ 16] for solv- 
ing (15):  

(i) solve B E  (") = g - A y  ("), n = O, 1 . . . .  ; 

(ii) compute 

p = { ~("), n = O, 

~(n) _ ~minlK'n)l~ n - I  
~l=l . . . .  -IP , n =  1 ,2  . . . . .  

( Dt~"), f t . - t ) )  
b., .-t  - (Dp(._t) ,p(._t)), l = 1, 2 ..... min(K, n); 

(iii) compute y("+~) = yl") + a,,p ('), a .  = (Dz ('), p("))l 
(Dp(.), pl.)), 

where z t") = w - y("), n = 0, 1 . . . .  ; B is the preconditioner; 

and the choice of  D, symmetric, and positive definite, allows 
to compute inner product (Dz  ''), p(")) for every n. For our case 
of  block-matrix A, assuming that the equations 

A i t x  I = gi,  (16) 

A22 X2 = g-~ (17) 

can be easily solved, the following choice of  B and D may 
be tried: 

B = (21 - AD,~])-IDa, 

D = (D,TIA)r(DalA).  

Here I is the identity matrix and 

[A; 0] 
O A = 

A22 

For any special initial guess such that 

r Ay0:[:] (18) 

only one equation (1 6) and one equation (17) have to be solved 
at each iteration step of the BLOCK-ORTHOMIN(K)  method. 
Generally, this is not true in the case of  the iterative solving 
of (16) or (17) with insufficient accuracy, so restarts may be 
recommended, updating the iterative guess to satisfy condi- 
tion (18). 

In our case method of approximate factorization (MAF) by 
Dupont et al. [17], modified and coded by Makarov [18]. is 
used for solving Eq. (16). The march algorithm by Bank and 
Rose [19], modified and coded by Kaporin [20], is used for 
solving Eq. (17). 

N U M E R I C A L  R E S U L T S  A N D  C O N C L U S I O N S  

The lid-driven cavity flow is computed on uniform grids 
with 33 x 34 and 65 × 66 nodes. Values of  the Reynolds 
numbers equal to 10, 100, 400, 1000 are considered. For com- 
parison, the lid-driven cavity flow is computed by use of  the 
coupled solving numerical technique (7)-(13),  as well as by 
use of  the usual decoupled (consecutive) solving technique [ 1 ]. 
In both cases the same methods and codes are used for solving 
Eqs. (16) and (17). The following criterion of flow stabilization 
is used: 

I1(  - < II ,llc. 

All computational results are presented in Tables I -V .  The 
following computed data are presented in Tables I - I V  for 
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T A B L E  I 

Re = 10 
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Mesh 

size T Scheme CPU NSTEP NBIT NALLIT ~m~ 

33 × 34 0.4 CD 42 l0 25 240 0.099?2 
4.0 CD 23 6 13 128 0.09970 
O.OI CS.CD 80 132 253 0.099?2 

0.4 FUD 42 I 0 25 241 0.09980 
4.0 FUD 24 6 14 136 0.09983 
0.01 CS.FUD 86 132 261 0.09990 

0.4 SUD 45 10 25 264 0.09973 
4.0 SUD 25 6 14 136 0.09976 
0.01 CS.SUD 94 132 258 0.0997 I 

65 × 66 0.1 CD 480 16 86 763 0.09998 
10.0 CD 163 4 28 280 0.10000 
(I.003 CS.CD 854 389 0.09998 

0. I FUD 541 17 100 856 0.09996 
10.0 FUD 154 4 28 253 0.09998 
0.003 CS.FUD 924 388 596 0.1001 

0.1 SUD 598 17 106 971 0.09999 
10.0 SUD 164 4 28 278 0.10010 
0.003 CS.SUD 1005 389 593 0.09998 

T A B L E  I I  

Re = 100 

Mesh 
size ~- Scheme CPU NSTEP NBIT NALLIT ~0,,~ 

33 × 34 1.0 CD 60 16 39 344 0.1021 
I 0.0 CD 69 15 41 450 0.1022 
0.1 CS.CD 94 138 395 0.1021 

1.0 FUD 80 22 53 456 0.09982 
10.0 FUD 33 9 21 188 0.09980 

100.0 FUD 26 7 17 148 0.09965 
0.1 CS.FUD 94 127 392 0.1014 

1.0 SUD 78 20 46 451 0.1021 
10.0 SUD 44 9 26 256 0.1022 

100.0 SUD 27 7 17 154 0.1021 
0.1 CS.SUD 91 111 383 0.1021 

65 × 66 1.0 CD 285 19 51 422 0.1032 
10.0 CD 374 13 68 586 0.1027 
0.03 CS.CD 997 410 866 0.1031 

1.0 FUD 431 20 73 659 0.09994 
10.0 FUD 158 9 25 238 0.09997 

100.0 FUD 100 6 16 152 0.09969 
0.03 CS.FUD 1210 469 994 0.1029 

1.0 SUD 385 20 62 576 0.1032 
10.0 SUD 194 10 30 305 0.1034 

100.0 SUD 460 8 32 1045 0.1040 
0.03 CS.SUD 1147 410 898 0.1031 
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TABLE III 

Re = 400 

Mesh 
size z Scheme CPU NSTEP NBIT NALLIT ~bo,.~ 

65 × 66 1.0 CD 780 40 110 1313 0.1122 
0.1 CS.CD 867 302 1006 0.1120 

1.0 FUD 603 43 99 864 0.09978 
10.0 FUD 183 I 0 30 280 0.09968 
0.1 CS.FUD 808 271 879 0.1037 

1.0 SUD 636 40 99 952 0. 1122 
10.0 SUD 300 13 51 460 0.1122 
0.1 CS.SUD 914 299 694 0.1120 

Reynolds number equal to 10, 100, 400, and 1000, respec- 

tively: 

CPU, CPU time in seconds on main frame computer 
IBM 4341; 

NSTEP, number of time steps up to flow stabilization; 

NBIT, number of block-iterations throughout all time 
steps; 

NALLIT, overall number of iterations for solving systems 
(16) throughout all time steps; 

~bm~, maximum value of stream function. 

As was mentioned above, the schemes used in our computa- 

tions are denoted as follows: CD, central differencing scheme; 
FUD, first upwind differencing scheme [1]; SUD, second up- 
wind differencing scheme [7]. In the case of using the consecu- 

tive solving numerical technique, the schemes are denoted 
CS.CD, CS.FUD, and CS.SUD, respectively. For Re --- 1000 
only upwind schemes are used. 

It can be seen from Tables I - I V  that restriction (2) does 
not take place when one uses the coupled solving numerical 

technique. For small Reynolds numbers (10 and 100) any value 
of the time step t can be chosen for any of the considered 
difference schemes. For moderate Reynolds numbers (400 and 

1000) the same is true only when one uses upwind schemes. 
This possibility of using very large time steps for solving un- 
steady Navier-Stokes equations shows that the implicitness of 

the boundary conditions for the vorticity is more important than 
the nonlinearity of the convective terms for lid-driven cavity 

flow for Re < 1000. Note that if the value of t is very large 
we have to consider the Navier-Stokes equations solution as 
a solution of the steady-state problem obtained by a simple 
iteration method. In this case t is not the time step but the 

iteration parameter. The results presented in Tables I - I V  also 
show that for small and moderate values of the Reynolds num- 
bers there are no reasons for using Newton's  method for linear- 

ization of the considered equations. 
Note, that the steady-state lid-driven cavity flow can be com- 

TABLE IV 

Re = 1000 

Mesh 
size r Scheme CPU NSTEP NBIT NALLIT ~b,,,~ 

33 x 34 10.0 FUD 42 12 24 232 0.09941 
100.0 FUD 27 7 15 148 0.09969 

1.0 CS.FUD 52 51 322 0.07771 

10.0 SUD 160 29 101 936 0.1030 
100.0 SUD 61 11 35 377 0.1037 

0.25 CS.SUD 144 184 529 0.1025 

65 x 66 5.0 FUD 410 28 64 614 0.09944 
100.0 FUD 104 6 15 144 0.09953 

0.25 CS.FUD 508 148 704 0.09464 

5.0 SUD 425 31 62 620 0.I 162 
100.0 SUD 594 14 74 1149 0.1126 

0.25 CS.SUD 581 166 718 0.1141 
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Mesh 
Re size Scheme 

Primary vortex Left comer vortex Right comer vortex 

~0,,,. w,., q/i,t, wl .... qJ,,.,., cot,,., w(0.5, I ) 

100 FUD 0.09994 
CS.FUD O. 1029 

65 SUD 0.1032 
CS.SUD 0.1031 

CD 0.1031 
CS.CD 0.1031 

129 Chia [21] 0.1034 

41 Gupta [22] O. 1032 

321 Vanka [6] O. 1034 

400 FUD 0.09978 
CS.FUD 0.1037 

65 SUD 0.1122 
CS.SUD 0.1120 

CD 0.1122 
CS.CD 0.1120 

129 Chia [21] 0.1139 

41 Gupta [22] 0.1112 

321 Vanka [6] 0.1136 

1000 FUD 0.09920 
CS.FUD 0.09464 

65 SUD 0.1141 
CS.SUD 0.1141 

129 Chia [21] 0.1179 
41 Gupta [22] 0.1074 

321 Vanka [6] 0.1173 

3.11 -0.297 (-5) -0.016 -0.296 (-5) -0.016 5.87 
3.10 -0.253 (-5) -0.021 -0.114 (-4) -0.030 6.65 

3.11 -0.144 (-4) -0.040 -0.253 (-5) -0.020 6.61 
3.11 -0.145 (-4) -0.040 -0.250 (-5) -0.021 6.61 

3.11 -0.146 (-4) -0.040 -0.252 (-5) -0.020 6.61 
3.11 -0.145 (-4) -0.040 -0.250 (-5) -0.021 6.61 

3.17 -0 .125 ( - 4 )  -0.031 -0 .175 ( - 5 )  -0.016 

3.28 -0 .124 ( - 4 )  -0.174 ( - 5 )  6.56 

-0 .114 ( - 4 )  -0 .194 ( - 5 )  

3.26 -0.303 (-5) -0.015 -0.303 (-5) -0.015 5.88 
2.19 -0.308 (-3) -0.251 -0.997 (-5) -0.047 10.43 

2.27 -0.676 (-3) -0.418 -0.167 (-4) -0.049 10.36 
2.26 -0.673 (-3) -0.417 -0.165 (-4) -0.049 10.38 

2.27 -0.676 (-3) -0.418 -0.167 (-4) -0.049 10.36 
2.26 -0.673 (-3) -0.417 -0.165 (-4) -0.049 10.38 

2.29 - 0 . 6 4 2 ( - 3 )  -0 .434 - 0 . 1 4 2 ( - 4 )  -0 .057 

2.30 -0 .  700(-3)  - 0 . 137 ( -4 )  I0.15 

- 0 . 6 4 5 ( - 3 )  - 0 . 1 4 6 ( - 4 )  

3 . 2 4  -0.310(-5) -0.015 -0.311(-5) -0.015 5.91 
1 . 7 4  -0.658(-4) -0.151 -0.839(-4) -0.668 16.90 

2 . 0 1  -0.228(-3) -0.297 -0.190(-2) -1.100 16.13 
2 . 0 1  -0.226(-3) -0.296 -0.190 (-2) - 1.100 16.14 

2.05 -0.231 ( - 3 )  -0.362 -0 .175 ( - 2 )  -1 .155 
2.01 -0 .138  ( - 3 )  -0.211 ( - 2 )  16.24 

-0 .224 ( - 3 )  -0 .174 ( - 2 )  

puted faster with the coupled solving numerical technique, as 
can be seen from Tables I - I V  for fixed Re number and for 

the chosen difference scheme (the time-step values for the 
consecutive solving technique are chosen in agreement with 
the investigations from our paper [23]). 

The main reason for this is that the coupled solving numerical 
technique allows larger values for the time step t to be used. 
Note that suggested computing technique (7)-(13) is essentially 
more effective for small and moderate Reynolds numbers and 
on fine grids (see Tables I and II). For Re = 1000 the both, 

coupled and decoupled, numerical techniques require relatively 
the same computational resources. Table V presents more de- 
tailed information about computed flows for Re = 100, 400, 
and 1000, as well as data from other papers. One can observe 
there the stream function value and the vorticity value at the 

primary vortex center (4th and 5th columns), at the left corner 
vortex center (6th and 7th columns), and at the right corner 
vortex center (8th and 9th columns), respectively. The last 
column presents the vorticity value at the mid of the lid. The 
results, computed by using the coupled solving numerical tech- 

nique, as well as by using the decoupled (consecutive) tech- 

nique, are presented. For comparison, the corresponding data 
from papers of Chia et  al.  [21], Gupta [22], and Vanka [6] are 
presented. In general, there exist a good agreement between 
data computed here and data computed by other authors. The 
three different spatial approximations of the convective terms 
used in this paper are well known for a long time. Therefore 

we will not discuss in detail their advantages and disadvantages. 
We will just briefly discuss the results presented in the Tables 
I -V,  concerning the accuracy of the computations. As one may 
expect, all the three difference schemes used are very similar 
for small Reynolds numbers and they produce almost identical 
results in this case (see Table I). It can be seen from Table V 
that the larger the value for the Reynolds number considered, 
the less adequate are the results obtained using the first upwind 
differencing scheme. Concerning the central differencing (CD) 
and second upwind differencing scheme (the last one has almost 
second-order spatial approximation in the regions of the slow 
flow). Both these schemes give almost identical values of the 
stream function and of the vorticity at the primary and secondary 
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vortices centers. These values are in good agreement with the 
respective values from papers [6, 21, 22] (note, that we use a 
grid with 65 × 66 nodes, Chia et al. [21] use 129 x 129 nodes, 
Vanka [6] uses 321 × 321 nodes, and Gupta [22] uses 41 × 
41 nodes, but he uses higher order difference schemes). 

Summarizing, the explicit determination of the boundary 
conditions for the vorticity (1) is the main restriction on the 
time step in solving 2D unsteady Navier-Stokes equations in 
stream function-vorticity formulation when the closed domain 
and the moderate Reynolds numbers are considered. The above 
suggested computing technique allows restriction (2) to be 
overcome. 
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